
Network Frame Monitor
Local application

Wed, Jun 4, 1997

The FMON local application is designed to aid network frame diagnostics. It can
capture a part of network frames received or transmitted to/from a selected target
node, or from all nodes. It also checks for duplicate frames by monitoring the
identification field in the IP header.

Traditional embedded network diagnostic
In each IRM or local station system, network frame diagnostics are included

that write into the NETFRAME data stream (DSTRM entry #0) a short record of each
network frame that is received or transmitted by that node. The record contains the
node#, the size of the frame, a ptr to the frame buffer holding the frame, and the
calendar time of the frame reception or transmission, with resolution down to half
milliseconds since the start of the current 15 Hz cycle. A page application NETF

allows viewing of the contents of this data stream. It can also allow viewing frame
contents, but this part can only work if one asks to view a given frame before the
circular buffer of frames is overwritten by successive receive or transmit frame
activity. For busy systems, especially including IRMs that connect to ethernet, one
may have only a few seconds before the buffers are overwritten. This makes it very
difficult to do some kinds of frame diagnostics using this embedded tool, when it is
necessary to view frame contents at leisure.

New method of capturing frames
The FMON local application runs in a system for which frame diagnostics are

needed for frames associated with communication of that node with another node.
The approach in using FMON is that of doing an experiement, rather than operating a
typical utility. These are the FMON parameters available on Page E:

E LOC APPL PARAMS 06/03/97 1438
NODE<0509> NTRY<28>/64 H<0508>
NAME=FMON CNTR=47 DT= 0.5 MS
TITL"NET FRAME MONITOR "
SVAR=00044D9A 05/06/97 0931
ENABLE B<00EF>*FMON ENABLE
NODE# <E071>
ON B<00EE>*FMON CAPTURE ON
MAX INDX <2000>
DIAGPHI <0030>
DIAGPLO <0000>
W OFFSET <0011>
FLAGS TR <0003>

First there is the usual enable Bit# needed for each local application instance.
The node# parameter identifies the target node for which frame communications are
of interest. In the case of IP-based communications, this is a pseudo node# that
corresponds to an IP socket, the combination of an IP address and a UDP port#. The

Network Frame Monitor p 2

used for ethernet. The middle two digits identify a 16-byte entry 02–FF in the IPARP

table, and the least digit is a port# index that refers to a UDP port# via the associated
port# block that is allocated for use while an IPARP table entry is active. An entry
times out after no activity is observed for about an hour. Port# index values of 1–F
signify valid UDP ports in current use. An index value of 0 means a port# is not used,
such as for the case of an ICMP ping request/reply message or an IP datagram
fragment. So, if a pseudo node# is used as a target node# parameter, it really refers to
a node and port combination. In order to find out what pseudo node# value to use here,
one may have to check the traditional NETFRAME diagnostics during a trial run.

The ON capture Bit# parameter allows enabling or disabling the frame capture
logic without disabling the local application itself. This is convenient because one
needs to check the FMON static variables—allocated dynamically when the local
application enable bit is set—to get information about where the frames are
currently being captured. The maximum index parameter refers to the size of the
memory available for capturing frame contents. A 64-byte data structure is used for
frame capture; thus, only a portion of the frame may be captured. In this example,
the maximum index parameter of $2000 means that there is room in memory to
capture parts of 8K frames. The two following parameters together comprise the 32-
bit base address of memory that is to be used for the frame capture data. For IRMs it
is common to use $300000–3FFFFF for this purpose. This is the fourth megabyte of
memory on the CPU board, currently not used for system purposes.

The word offset parameter allows capturing parts of frames not beginning with
the start of the frame header. For example, for ethernet, an offset value of $07 will
skip the 14-byte frame header. For IP frames, a value of $11 will skip both the frame
header and the 20-byte IP header. A value of $15 would additionally skip the 8-byte
UDP header, allowing capture of frame contents beginning with the start of the UDP

datagram contents. the captured data is actually limited to 56 bytes, as the first 8
bytes of the 64-byte record is for the calendar time of the frame reception or
transmission. The "TR FLAG" parameter refers to whether receive, transmit, or both
receive and transmit frames are to be captured. The least significant two bits are
used for this purpose:

0 none
1 receive
2 transmit
3 both receive and transmit

Note that the use of a 64-byte structure to hold captured frame contents is a
convenient match to the Memory Dump page application—not an accident. One can
advance through successive frames using that diagnostic page application and very

Network Frame Monitor p 3

quickly identify changed fields of interest.

The FMON program builds on the traditional frame NETFRAME diagnostics in
order to provide its functions. It uses a local data request to monitor the records
written into that data stream each 15Hz cycle. When it gets a match for capture, it
uses the buffer ptr to grab the frame contents that are to be captured, during that
same 15 Hz cycle, thus insuring that the network buffers will not be overwritten
before the contents can be captured. The capture circular buffer is typically quite
large; if necessary, the capture enable bit can be turned off to assure that captured
frames may be examined at leisure until the cows come home.

Duplicate frames
By monitoring the identification field—designed for identifying IP datagram

fragments that belong to the same IP datagram in order to allow IP fragment
reassembly to work—in the IP header of received frames, FMON can notice when
duplicate frames occur by maintaining a small table of such data for frames recently
received from the target node. This logic was installed at a time when we were
experiencing such problems that turned out to stem from overloaded network
hardware. There is no guarantee that a particular IP implementation would be
compatible with this specific duplicate frame logic, but those that were tested
implemented the standard by using an incrementing counter value for every IP
datagram transmitted, a scheme that insures there will be no repeat until 65536
datagrams have been transmitted. It's simple and it works.

Method of operation
To perform an experiment in frame capture diagnostics, prepare suitable

parameter values that will be needed, using Page E. The parameter that will likely
require the most attention is the target node#. For IP frames, this will be a pseudo
node# word that represents a UDP socket, as described earlier. A trial run may be
needed to determine this value; use the NETFRAME diagnostics via Page F to get a
handle on this. It can capture the occurrences of the last 237 frames received or
transmitted. One can usually identify the frames of interest by the frame size and
period of activity, so that one normally doesn't have to be quick enough to capture the
actual frame contents using that program. Enter the node# thus determined as the
target node# parameter value. It will be good for an hour or so, at least, because that
is the timeout for ARP table entries. When that much time passes without any IP
receive or transmit activity for that node, the ARP table entry will be cleared. The
next time access occurs with the same node, it may quite possibly be assigned a
different table entry than before, and will therefore have a different pseudo node#.

Choose the word offset used for frame capture according to what part of the frame
contents needs to be captured. Select whether receive or transmit frames should be

Network Frame Monitor p 4

captured. Enable the capture flag bit. If it is already on, toggle it off and back on. This
is optional, but it will cause the capture to begin at the start of the memory used for
the purpose. The memory stores frames in a circular buffer mode; therefore, the last
"MAX INDX" frames will be captured and available anyway, but it may be more
convenient to know that the capturing starts at the beginning. When the capture
enable bit transitions from 0 to 1, the internal logic resets the capture circular buffer
pointer to the beginning.

Perform the experiment during which frames must be captured. If it is necessary to
also capture frames relating to a second target node#, then install a second instance
of the FMON local application. Obviously, different parameters must be used for the
enable bit, although the capture enable Bit# parameter could be the same for both
instances. But be careful not to use the same area of memory for the capture circular
buffers needed by each instance!

When the condition is reached for which the frame data should be studied, one can
turn off the capture enable Bit#. This will freeze the capturing. In some cases, this
won't be necessary, as the condition that is reached may terminate the
communication anyway. As an example, this tool was used to capture frame data so
as to learn what caused snapshot plot activity to terminate. The condition reached
was cancellation of the snapshot request and therefore termination of communication
activity; no further frames would be captured anyway. It depends upon the exact
nature of the experiment being performed.

To examine the frames captured, one can observe some of the static variables in use
for this local application. Using the ptr shown on Page E, one can see the following
picture on the Memory Dump Page for the time in which this was captured as an
example:

Network Frame Monitor p 5
8 MEMORY DUMP 06/04/97 1055
0509:044D9A 0904 0000 0000 0007
0509:044DA2 0509 0091 0000 BF0B
0509:044DAA 01CE 2000 0000 01CD
0509:044DB2 0030 0000 0030 7300 Ptr into capture circular buffer
0509:044DBA 0001 0001 0001 0001
0509:044DC2 0101 0000 0000 0000
0509:044DCA 0000 0000 0000 0000
0509:044DD2 0000 0000 0000 0000

0509:044DDA 000E 000E 0000 0000
0509:044DE2 0000 0000 0000 0000
0509:044DEA 4F06 BE76 2FE8 A059
0509:044DF2 12CB 823A F126 DC96
0509:044DFA AD8E C98E E08E F88E
0509:044E02 1E8F 3B8F 558F 6E8F
0509:044E0A 948F AC8F C48F DD8F
0509:044E12 0390 568E 6E8E 878E

On the first "page," fourth line, in this example, the address 00307300 is the pointer to
a 64-byte structure containing the date and up to 56 bytes of the contents of the last
frame captured. Here is that structure:

0509:307300 9706 0410 5506 0083 Time 6/4/97 10:55:06 cycle 0, 33ms
0509:307308 008A 008A 00E6 DADE UDP header (srcPort=dstPort=138)
0509:307310 1102 12BD 83E1 7BD9 UDP datagram contents used for
0509:307318 008A 00D0 0000 2045 NETBIOS datagram protocol
0509:307320 4246 4145 4945 4A45
0509:307328 4543 4143 4143 4143
0509:307330 4143 4143 4143 4143
0509:307338 4143 4143 4141 4100

Since the word offset parameter was $11 for this example, the captured frame data
begins at the UDP header, assuming IP communications are used. In this example, the
UDP port# used is 138. According to the RFC document that describes Internet
Protocol Assigned Numbers, this port# is used for NETBIOS Datagram Service. The
UDP length is 230 bytes. It was nothing of local interest, but in this example, pseudo
node# E071 just happened to correspond to aphid.fnal.gov, presumably a PC. The last
experiment using FMON in node0509 was done many days ago, after which the
meaning of the pseudo node# changed to another node. Still, it serves here as an
example. One can find the significance of the pseudo node# by looking up the entry in
the IPARP table, currently based at $40E000 in all IRMs. At $40E070 we find the
following ARP table entry:

0509:40E070 00A0 2491 A138 0000
0509:40E078 83E1 7BD9 0004 3A98

The port# block at $43A98 is as follows:

Network Frame Monitor p 6
0509:043A98 0060 0426 0000 0015 Port# memory block is type $15.
0509:043AA0 002C 0003 0EBE 03CE
0509:043AA8 0000 0000 0000 0000
0509:043AB0 0000 0000 0000 0000
0509:043AB8 0000 0000 008A 0000 Each entry in array is port#, use count
0509:043AC0 0089 0000 0000 0000
0509:043AC8 0000 0000 0000 0000
0509:043AD0 0000 0000 0000 0000
0509:043AD8 0000 0000 0000 0000
0509:043AE0 0000 0000 0000 0000
0509:043AE8 0000 0000 0000 0000
0509:043AF0 0000 0000 0000 0000

In the port array, the port index 1 (lo 4 bits of $E071) corresponds to port 138. The IP
address is 83E17BD9, or 131.225.123.217, which is aphid.fnal.gov. Looking at previous
captured frames, it appears that this frame, presumably broadcast from
aphid.fnal.gov, is received every 15 minutes. If this level of activity continues, this
ARP table entry will not time out.

Duplicate frame diagnostics are shown on the second "page" of the first memory
display. The two values of 000E followed by 0000 indicate that the recent time-stamp
values and corresponding identification field values from the IP header. (The 000E
values are indexes into the arrays of time-stamp and identification field values.) The
fourth word of 0000 indicates that no duplicate frames received from the target node
were tallied during the time since the capture enable bit was last set to 1. The time-
stamp array is a byte array starting on the third line; the identification field value
array begins on the fifth line.

